
Proceedings of the 2004 Fall Simulation Interoperability Workshop, Orlando, FL, September 2004.

In Search of the Philosopher’s Stone:
Simulation Composability Versus Component-Based Software Design

Robert G. Bartholet

David C. Brogan
Paul F. Reynolds, Jr.
Joseph C. Carnahan

Modeling and Simulation Technology Research Initiative

University of Virginia
151 Engineer’s Way, PO Box 400740

Charlottesville, VA 22904-4740
434-982-2291|2211|1039|2291

{bartholet|dbrogan|reynolds|carnahan}@cs.virginia.edu

Keywords:
composability, interoperability, reuse, component, software

ABSTRACT: The simulation community and the software engineering community are actively conducting research
on technology that will make it possible to easily build complex systems by combining existing components. Advances
in these research areas offer both communities numerous benefits, including reduced development time and the
ability to explore a wider space of design alternatives by adding and removing components from existing software
systems. In the simulation community this research falls under the umbrella of composability. In the software
engineering community it is referred to as component-based software design (CBSD). We show that simulation
composability and CBSD are fundamentally the same. Both communities have made significant progress addressing
the syntactic, or software connection, issues of composability, but it has been difficult to guarantee that composed
components behave meaningfully (described as semantic composability within the simulation community). We
demonstrate that although the software engineer's perspective on the composability problem is different, it differs
only in terms of semantics and scale. By focusing on the similarities, we will show where the simulation community
can gain insight from past and current CBSD research within the software engineering community. Additionally, we
will address unique characteristics of simulations, such as the common use of stochastic sampling, time management,
and event generation, for providing special opportunities for composability.

1. Introduction

Within both the simulation and software engineering
communities, there has been a flurry of activity in the
past decade to ease the burden of implementing
complex software systems. The software engineering
community is looking at this problem for the general
case that includes all software systems, whereby the
modeling and simulation (M&S) community is focused
on simulations. Interestingly, though both groups
attack this problem from a different perspective, both
have identified a similar solution framework that
provides the ability to build a working, meaningful,
complex software system from a set of components. In
the software engineering community the solution
framework is called component-based software design

(CBSD)1. In the M&S community, it is (simulation)
composability.

Many have theorized about the existence of such a
solution framework in the general case, both for
software, and its subset, simulations. Contrast this
hypothetical solution with the ancient myth of the
philosopher’s stone, for which many conducted an
exuberant, irrational search for an unknown substance
that would transmute base metals into gold. While a
solution for building meaningful, complex software
systems from components may theoretically exist
(unlike the philosopher’s stone), the limited
technological advances to date in achieving this goal
may suggest that our initial exuberance in both CBSD
and composability was also somewhat irrational. We
believe additional advances in building software from

1 CBSD is also called component-based software
engineering (CBSE). In this paper we use CBSD.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
In Search of the Philosopher’s Stone: Simulation Composability Versus
Component-Based Software Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Cahrlottesville,VA,22094-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

components will be achieved, though of a more limited
scale and scope than solving this challenge for the
general case.

The search for a general composability solution is still
a noble one. The ability to build complex software
systems from a set of components will offer numerous
benefits to both the software and simulation
communities. If one can meet the requirements of a
complex system by pulling components off the shelf
and gluing them together with a reasonable level of
effort, then there exists the potential for a significant
savings in development time. Additionally if there are
several components that meet the same requirement(s),
then a wider space of design alternatives can be
implemented and tested, providing greater flexibility to
the system designers and implementers.

There are characteristics of simulations that can
provide purchase in the composability problem. These
include time management, stochastic sampling, and
event generation. These characteristics can be used to
argue that simulation composability is a unique
challenge. However, despite the assertion by some that
software engineers and simulationists are trying to
solve a fundamentally different problem, we will show
that the problem is actually the same. The technologies
developed to date by each community have achieved
strikingly similar results. It follows that the research
challenges that lie ahead for both communities are also
fundamentally the same. Hence, the simulation
community should pay close heed to current and future
research within the software engineering community as
it provides potential for progress in simulation
composability.

The remainder of this paper is structured as follows. In
sections 2 and 3, we discuss the state of the art in
building complex systems from components in the
simulation and software engineering communities
respectively. In section 4 we make the case that
composability and CBSD are more similar than
different. In section 5 we show where software
engineering research and technologies provide
opportunities that can be applied to simulation
composability, and where unique characteristics of
simulations may provide unique solutions for the
simulation domain. Finally, we draw some
conclusions in section 6.

2. Simulation Composability State-of-the-
Art

Composability has been defined as the capability to
select and assemble simulation components in various
combinations into valid simulation systems to satisfy
specific user requirements [1]. Interoperability differs
from composability because it only requires
components to be combined in a meaningful way for a
single instance, contrasted with composability which
requires the ability to combine and recombine
components in other ways to meet new objectives
without requiring substantial integration efforts [1].
What exactly constitutes a “substantial integration
effort” is subjective. Therefore the delineation
between composability and interoperability is
admittedly a sliding scale without objective
boundaries. In some respects, if strict composability is
too hard, interoperability might be good enough,
providing a tolerable balance between simulation
component reuse and development efforts.

To date, there have been no significant breakthroughs
in building practical, composable, simulation
frameworks. Most of the progress has been achieved
on the theoretical side of composability, most notably
complexity results for the component selection
problem [2][3][4], and a formal theory of
composability [5][6]. Contrast this lack of progress in
composability with simulation interoperability, which
in the last decade has seen a plethora of technologies
emerge to advance the M&S community. Most
notably, the development of Distributed Interactive
Simulation (DIS) [7], Aggregate Level Simulation
Protocol (ALSP) [8], and the High Level Architecture
(HLA) [9] have given simulation developers some
tools to glue together simulation components into an
interoperable federation.

These tools do, however, have two significant, related
shortfalls: the inability to guarantee consistency
between simulations in the federation, and the inability
to provide for component reuse in other federations
without significant source code modifications. In
other words, while these tools can provide the means
for exchanging and maintaining entity state, resolving
interactions, managing time, and managing data
distribution, they provide only minimal facilities for
ensuring the federation is a meaningful simulation.
This lack of support often results in simulations that
fail to meet requirements because of a lack of
consistency caused by fundamental differences in
underlying models.

Composability theory explains how an executing
federation can provide imperfect results. There are two
types of composability, syntactic and semantic [1].
Syntactic composability requires compatible
implementation details for all possible compositions.
Examples of implementation details include timing
mechanisms and interface specifications. Semantic
composability requires a meaningful, or valid
composition. Informally this definition implies that the
assumptions made by each component in a
composition remain consistent throughout the
execution of the simulation. Both syntactic and
semantic composability are necessary for simulation
composability.

Historically, syntactic composability has been
achievable, especially if components are built to a
common engineering framework. Semantic
composability, on the other hand, has been a much
more difficult undertaking. The potential for some
new technologies to allow researchers to gain
footholds in solving semantic composability is
explored further in section 5.

A recent DoD initiative is the Product Line Approach
within the One Semi-Automated Forces (OneSAF)
simulation framework. This framework provides an
integrated system for planning, generating, and
managing a simulation composed of components built
to support the framework [10]. OneSAF is an HLA
compliant system, so it has all the interoperability tools
that come with the HLA specification. Additionally,
OneSAF provides a host of tools for composing a
simulation from a set of behaviors, entities, units, and
environmental models, all architected to conform to the
OneSAF framework. However, OneSAF does not
contain any ability to enforce assumptions and
dependencies bound to a component as it is reused in a
different context. The advantage of the OneSAF
framework is that the set of models from which to
construct a simulation have all been engineered to
work within the framework. Therefore, as long as
developers stay within the framework, they should
have the ability to modify these models to meet new
requirements, without concern for the pre-existing
code that provides the glue into the framework. The
community awaits final evaluation of the OneSAF
framework, which will be to observe that the
integration required by simulation composability
remains an efficient means to build a meaningful
simulation.

3. Component-Based Software Design

We begin our discussion on CBSD with two
definitions for a software component from widely read
texts. The first is by Szyperski [11]:

A software component is a unit of composition with
contextually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
third-party composition.

Contrast this definition with [12]:

A software component is a software element that
conforms to a component model and can be
independently deployed and composed without
modification according to a composition standard.

At face value, these definitions may appear to be very
different, though upon further inspection they are quite
similar. Both definitions stipulate that components are
independent, and can be composed with other
components. The first definition is more specific about
the interfaces and dependencies, though these
characteristics are wrapped up within the conformance
to a component model of the second definition.
Clearly, the major difference between the definitions is
that the second calls for composition without
modification. If deployed components are not to be
modified, then there is a major difference between the
expectations of software engineers and simulationists
with respect to the ability to modify components and
still have composition. We expound on this point in
section 4.

Since the inception of CBSD techniques in the early
1990s, the technology has quickly reached a level of
maturity where its use is accepted across the software
development arena today. Three component models
have clearly risen to the top: Microsoft’s Component
Object Model Plus (COM+) [13], the Object
Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA) [14], and
Sun’s Enterprise JavaBeans (EJB) [15].2

While each of these models enforces a unique binary
structure, in an abstract sense they are very similar in
how they function. For example, to invoke a
component service, the client process calls a local

2 COM+ is closely related to ActiveX, OLE, COM,
DCOM, and MTS. EJB is closely related to
JavaBeans. For simplicity we have generalized the
related technologies into one component model.

proxy, or object request broker, which then marshals
the function parameters and ships them to the
component. The component can reside within the
same process, or in another process on the local
machine or a remote machine. Regardless of the
location of the component, the server where it resides
will contain a remote proxy for the component, which
then unmarshals the parameters and passes them to the
component. The component then computes, and
returns results through the proxies back to the calling
client (which could itself be a component).

All three of these component technologies provide a
means for components to expose their public
interfaces, either through reflection, stubs, or a
combination of both. Additionally, there is support in
all three for dynamic invocation and the ability to
query component features from information provided
by metadata. In addition to these common services,
there are also unique services provided by some
subsets of the models, such as support for security,
transactions, events, and serialization.

The aforementioned unique binary structure of these
technologies is an obvious constraint on the user, and
also limits the ability to build systems across
component models. The technology to allow a
component to use another component that is
implemented in another component model is only
available for certain pairs of component models.
However, recent work has focused on providing a
framework that supports interoperability across all
component models [16].

In general, state of the art software component
technologies solve syntactic composability challenges.
They provide the implementation facilities for
components to communicate and provide services
amongst one another, but they provide no guarantees
about the reliability or consistency of the exchanged
information with respect to the rest of the computing
environment. Leaders in the software engineering
community admitted in 1998 that the current state of
CBSD was challenged with respect to developing large
applications, managing multiple versions of
components, and integrating components developed by
different people using different component frameworks
[17]. For these reasons and others, industry survey
results published in 2002 show that CBSD has not yet
become the mainstream, predominant software
development technology many envisioned it to be [18].

The discovery by component users that often leads to
frustration is what software engineers call “side-
effects,” or unintended consequences of adding or

swapping a new component into a system. One of the
questions we explore next is whether these side-effects
are fundamentally the same challenges faced by
simulation developers who come across issues of
semantic composability.

4. Closing the Perceived Gap Between
CBSD and Composability

In their recent monograph on simulation
composability, Davis and Anderson make the case that
composing models is more difficult than composing
general software components [19]. Their argument is
predicated on the assumptions that models are more
complex, are developed for particular purposes, and
depend on context-sensitive assumptions. They
believe model (simulation) composition infers a white-
box where the developer can see, and quite possibly
modify, the internals, and software engineering
composition implies a black-box component with only
the interface exposed.

When reviewing the historical progress of software
engineers and simulationists, this argument seems
compelling. However, in this section, we will examine
this argument in more detail and show that this is not
an accurate characterization; that indeed, software
engineering and simulation composability challenges
are fundamentally the same. In particular, the
assumption that software engineers can disregard
internal states that simulationists must analyze for
meaning does not clearly hold. We compare
composability and CBSD along four dimensions: the
business case, architectural mismatch, the complexity
of the composition, and component semantics.

4.1 The Business Case

As we outlined in section 1, the motivations for
composition are consistent across M&S and software
engineering. Both communities desire reuse and a
wider range of design alternatives.

Throughout the literature, simulationists and software
engineers also clearly agree on the business case
challenges of composition. In both fields, there is an
outcry for the infrastructure necessary to facilitate the
motivation to build and use components. This
infrastructure includes, in addition to the components
themselves, repository facilities, meta-data standards,
and query tools. The challenge is the large up-front
investment necessary to jump-start the communities to
make composition an every-day reality.

Fred Brooks, a pioneer in the field of software
engineering, believes that, although not a “silver
bullet”, component-based engineering is the key
technology for future advances in software
development [20][21]. However, he eloquently states
why component reuse isn’t happening in the large.
Simply put, the cost to reconstruct a component is low,
and the cost to discover the functionality of an existing
component is high.

Here is another perspective on the same challenge. If a
conceptual component is small and simple, a developer
will deem it easier to build and integrate it himself
rather than trying to understand and integrate an
existing component. However, if a conceptual
component is large and complex, then the investment
associated with componentizing the software for future
reuse is too high to justify the lack of a short-term
benefit, and could even cause short-term pain if a
deadline is missed, notwithstanding the potential
complexities associated with composing a piece of
complex software. These arguments apply equally to
both the simulation and software engineering fields,
and hence at a business case and motivation level,
simulationists and software engineers face the same
challenges to gain some momentum for composability.

Brooks uses the field of mathematics to provide a good
example where components have been embraced, and
this example provides a useful context for
simulationists [21]. In mathematics, it takes a large
amount of intellectual effort to write software, so the
cost to reconstruct a mathematical component is high.
There is also a rich and standard nomenclature within
the mathematical field to describe the functionality of
components, so it doesn’t take long for a developer
composing a mathematical component to understand
the functionality and assumptions underlying the
component. We believe this successful exemplar from
a subset of the general software domain provides some
hints for future successes of simulationists advocating
composability. Composability will be most successful
where it produces a significant reduction in
development effort and provides formal means to
describe the functionality of components. These ideas
are not new to simulationists. However, some
simulationists may be surprised to learn that they are
not new to software engineers either.

4.2 Architectural Mismatches

A survey of some classic software engineering
literature on CBSD provides a good starting point for
providing comparisons between simulation
composability and CBSD. In 1995 Garlan, et al.

explored the problems associated with building a
useable system from large, monolithic components
[22]. In addition to challenges of performance and
code size, they realized a primary complication was
caused by components that possessed incompatible
assumptions (about program control, data,
communications, topology, build process…). The
solution required a significant rewrite of much of the
existing component software to align component
assumptions and make the pieces work meaningfully
together. They coined the term “architectural
mismatch” to describe how the components did not fit
together well. Their recommendations for the way
forward include the explicit announcement of
assumptions, using orthogonal subcomponents,
developing techniques for bridging mismatches, and
providing a cookbook for software composition rules
and principles.

In 1996 Sullivan and Knight attacked the premise of
Garlan that building systems from large scale
components is hard [23]. They built a system from
large-scale components (each on the order of a million
lines of code) in approximately eight man-days.
Sullivan and Knight state that they did not experience
the same challenges because they used components
that were designed to work together from the start
(Visio and Access, which both implemented the OLE
component framework). Quoting their conclusion, “A
key lesson is that, if components are to be composable,
they have to be designed for it.” This is another
example where simulationists and software engineers
are coming to the same conclusion, as evidenced by
stunningly similar statements to this one that are found
in highly regarded publications on simulation
composability (Davis and Anderson [19] and Kasputis
and Ng [24]).

4.3 Scale Matters

While Sullivan and Knight are correct in asserting that
building to a common framework is critical to
composability, we believe it is also important to
evaluate the complexity of the composition as opposed
to the complexity of the components themselves. In
Sullivan’s system, the main task of the composition
consisted of maintaining consistency between the
database representation of a fault-tree in one
component and the graphical representation in another.
Even though each component is approximately one
million lines of code, this composition is relatively
simple in comparison with the composition complexity
of many modern simulation federations. We therefore
use this work as an example where composition shows

promise, but additional research of complex
compositions is required.

The tendency to keep composition relatively simple is
a distinguishing trend we see in the software
engineering community. The classic example where
components have been widely and successfully used is
with the construction of graphical user interfaces
(GUIs). In these systems, the components are typically
buttons or other widgets with very constrained
capabilities. The dependencies between components
are obvious to the developer and can be maintained
without a lot of bookkeeping or conceptual effort. The
semantics of the components are so constrained that it
allows for easy reuse when the widget is used in a
different context. For example, the typical meaning
(semantics) for a button is that it triggers an event
when it is clicked or released. There are no underlying
assumptions or dependencies that are not obvious from
the context. There could possibly be added complexity
such as the color of the button dynamically changing.
However, the key point here is that there are only so
many interesting things one can do with a button, and
hence button components are easy to compose within
the domain for which they were intended, a GUI.

As Davis pointed out, models are complex, and hence
very difficult to compose. We argue that this point is
not necessarily a truth, but rather an artifact of the way
simulationists have attacked the composability
problem. For instance, there are a multitude of legacy
monolithic simulations existing in the world today.
Simulationists tend to treat these simulations as
components with which to build new simulations. Any
attempt to compose these very complex components
will undoubtedly result in the kind of architectural
mismatches described by Garlan, mismatches that can
be described as both syntactic and semantic
composability challenges.

On the other hand, software engineers have achieved
successes in CBSD by building smaller components,
engineering them to a common framework, and then
composing them within a common domain (GUIs, for
example, are one well-known domain) where it is
easier to manage the assumptions and dependencies.
We believe simulationists should consider these
successes in software engineering and start to build
success stories by composing smaller pieces that are
designed to work together, and then scaling up.
OneSAF appears to be a good example where this
methodology can be applied.

Computer simulations are a subset of all computer
software, and simulation components are a subset of all

software components. Hence, it follows that the
simulation composability problem cannot be any more
difficult or complex than the general software
composability problem. We argue that simulationists
encounter complex composition challenges because
they are working on problems with a larger scale.
However, simulationists do have a unique perspective
of the challenges associated with trying to compose
components that have a large number of complex
dependencies and assumptions. These are the semantic
challenges with which software engineers are now
beginning to come to terms.

4.4 Semantics Matter

As referenced earlier, the argument exists that
simulationists need to treat components as white boxes
with a license to see, and even modify if necessary, the
internals. And the same argument states that software
engineers treat components as black boxes, assuming
the correctness of the internals and caring only about
the interfaces. Another way to characterize this
argument is that software engineers are concerned with
syntactic composability, and simulationists are focused
on semantic composability. In other words, general
software components are just that, software, without
meaning outside of the software context. This is
another example where the differences in the
complexity of the composability problem that each
community has historically attempted to solve has
influenced our beliefs.

We believe semantic composability is very important
to software engineers. Because semantics are defined
by component internals, software engineers are very
much in tune with component internals. Clearly, if
syntax were all that mattered to software engineers,
they would not write in their publications “It is hard to
detect errors when components are used in a different
context than for what they were originally designed.”
[25] Rather, it has historically been the case that the
semantics of typical software engineering components
(GUI widgets for example) and the limited domains in
which the components were used have been simple
enough that solutions for syntactic composability
(CBSD) were also solutions for semantic
composability.

Another perspective on whether CBSD components
have semantics is one in which we consider GUI
widgets as models of real world entities. For example,
a button widget is a model of any physical button that
triggers a mechanical or electrical event. The
semantics of a button widget are obviously important
to the engineer employing it. For example, if button-

widget A were semantically defined to disappear each
time it was clicked, this would be very important to the
GUI developer who tried to compose budget-widget A
with his interface. If he did not want this button to
ever disappear, then the composition of this button
with the other components could result in an interface
that was not meaningful.

As an aside, and not germane to the central arguments
in this paper, one could even take this point one step
further and show that all software is just a model of
some computation being performed on a mechanical
Turing Machine. Hence, all software is a model, and
software composability is equal to model
composability. This conjecture blurs the lines between
syntactic and semantic composability, since if all
software is a model, then it all has meaning, and hence
all syntax is semantics. Without delving further into
this topic, we believe that the traditional delineation
between syntactic and semantic composability, while
very convenient, does not necessarily have a clearly
defined boundary.

Software engineers care as much about semantics as
simulationists. As the complexity of composition in
general software components is scaled up, software
engineers are discovering that semantics matters. And
this scaling up is starting to happen, as evidenced by
this journal quote: “The goal is to replace IDE palettes
of text fields, data grids, push-buttons, and similar
GUI controls with palettes that contain business
objects, services, and functional views. Developers
would then select, customize, and assemble these items
into specialized components such as insurance
coverage, and script complex business processes such
as order fulfillment.” [26] As software engineers
increase the complexity of their component
interactions, we believe they will (or probably already
have) come across the same semantic composability
challenges already discovered by simulationists. There
are technologies and standards being developed today
outside the simulation community to address this
challenge. They are discussed in section 5.

4.5 Convergence in CBSD and Composability
Research

Simulationists and software engineers working on
composability have converged upon the same results,
but from different directions. Simulationists started by
trying to compose large, monolithic components.
Software engineers achieved successes by composing
small, semantically trivial components.

From different directions, syntactic composability has
been achieved in both communities. DIS, ALSP, and
the HLA provide the glue to tie together simulation
components, while COM+, EJB, and CORBA provide
binary compatibility for the interoperability of software
components. Clearly, the great unsolved challenge that
lies ahead for both communities is semantic
composability, the capability to compose components,
with the composition resulting in a meaningful, valid
system.

5. Moving Ahead with Simulation
Composability

Current simulation interoperability advances have
benefited from past software engineering research.
Specifically, the HLA design is heavily influenced by
the principles of object-oriented analysis and design, to
include information hiding and hierarchical class
structures. Not only has past software engineering
research impacted heavily on the current state of
simulation interoperability, but it will have future
impacts also. Observing how simulation composability
and CBSD are fundamentally the same, have
experienced similar progress, and have some common
challenges ahead, it follows that the simulation
community needs to closely monitor the new standards
and technologies emerging from the software
engineering community as potential paths for progress.

5.1 Following this Path

We will highlight three software technologies as
potential avenues for simulation advances in
composability. We chose technologies that provide
potential for the simulationists to document a
simulation and formally reason over the documentation
to provide insights about the prospects for
composability. This is not intended to be an
exhaustive list.

5.1.1 Predictable Assembly from Certifiable
Components (PACC) and Prediction-enabled
Component Technology (PECT)

Software engineers have discovered that even though
technologies exist to plug together compiled
components (CORBA, EJB, COM+), only after
assembly and testing might it be discovered that these
components are incompatible. Their interfaces may
not be sufficiently descriptive and the behaviors of
individual components may be unknown. These
shortcomings prevent the discovery of the behaviors of
compositions until after assembly.

PACC is an initiative at the Software Engineering
Institute to predict and certify the runtime behavior of
an assembly of components [27]. PECT is an approach
to achieving the PACC objectives [28]. PECT is an
extended component model that works by building a
Reasoning Framework for any runtime property. The
Reasoning Framework consists of Property Theory
(logic for reasoning about the property) and Decision
Procedure (an automated means of computing
predicted properties). The Reasoning Framework must
explicitly expose any assumptions about the system it
models. The component technology then ensures that
components and assemblies satisfy these assumptions
through static checking, resulting in a predictable
assembly behavior. In addition to this static check,
each well-formed assembly can be specified with a
composition language, which is formally mapped to a
unique model in the reasoning framework, introducing
more constraints on the components and their
assemblies.

This technology provides potential opportunities for
documenting and reasoning about the semantics of
simulation components and compositions of
simulations in a formal way. We believe this formal
reasoning is exactly the sort of technology needed to
support simulation semantic composability.

5.1.2 Web Ontology Language (OWL)

The Semantic Web is the vision of Tim Berners-Lee,
the founder of the World Wide Web. His vision is to
“… bring structure to the meaningful content of Web
pages.” [29] OWL is an emerging, enabling
technology for the Semantic Web under the guidance
of the World Wide Web Consortium [30]. Its power
lies in the ability to define structured ontologies for
delivering richer integration and interoperability of
data among descriptive communities. In OWL, data is
described using formal terms including discrete math
concepts (e.g. cardinality, enumeration, relations, and
set logic) and class hierarchies. Ontologies are built
using OWL to describe the structure and meaning of
data specific to any domain. OWL also includes
formalisms to tie together ontologies, providing
consistent meaning of information across domains.

OWL is a definite candidate technology for
documenting simulation components, and work has
already begun in this endeavor [31]. Using OWL
formalisms, pre-built ontologies supporting any
domain for which a model description is needed (to
include the M&S domain), and tools to reason about
ontologies, a framework is possible with which to

support the reasoning about whether simulation
components are semantically compatible.

5.1.3 Unified Modeling Language (UML)
and Model Driven Architecture (MDA)

UML is an OMG standard providing a graphical tool
for modeling the structure, behavior, and management
of software applications [32]. UML has become very
widely used in industry for software development and
documentation tasks. MDA, also an OMG product,
provides the means to separate application logic from
platform technology [33]. Using the MDA, a
developer builds a Platform Independent Model (PIM)
in UML, describing the application while abstracting
any potential platform technology. Then, using
standardized mappings and supported by automated
tools, the PIM can be transformed to a Platform
Specific Model (PSM), also described in UML. This
automated transformation allows for the rapid
implementation of a PIM to any one of many supported
technologies, to include CORBA, EJB, and .NET. The
MDA also provides facilities for building repositories
of models, describing data structure, and transmitting
models.

Previously, simulationists have proposed using the
OMG’s MDA to support simulation interoperability
and reuse [34][35][36]. These ideas, if successful,
would lead to a much more sophisticated and
automated means of providing HLA-like services to
simulations built from components. While useful,
these approaches don’t attack what we believe to be the
critical need for the simulation community, some level
of semantic composability. However, Ng et al. does
acknowledge the need for a separate XML-based
model specification language to support semantic
composition [35].

Davis and Anderson embrace documentation as a
critical supporting element of composability [19].
They advocate the potential of a high-level graphical
specification system like UML coupled with a more
detailed specification system, for example the Discrete
Event Specification System (DEVS) [37], as a viable
approach for documentation. If properly used to
document component functionality, constraints, and
assumptions, and given the right tools to query this
documentation, a more automated approach for
achieving semantic composability is possible.

5.2 Leveraging the Uniqueness of Simulations

Guaranteeing semantic composability is a very hard
problem. The previous section outlined technologies

that may provide approaches to this problem by
exposing the internals of components. However,
success is not guaranteed, and will probably be
achieved at a slow pace. Therefore, we believe
multiple approaches are in order.

In Section 4.3 we argued that the composability of
simulation components is fundamentally no more
difficult than the composability of general software
components. However, because simulation
composability is a subset of software composability,
focusing on unique solutions for simulation
composability could potentially provide solutions that
are not necessarily applicable for all software. Hence,
simulation composability could be a less difficult
problem than software composability. We are
investigating properties and characteristics commonly
found in simulation software, not normally found in all
software, from which we can gain traction and leverage
for unique simulation composability solutions.

For example, event-based software is an active area of
research within the software engineering community
[38]. However, the software engineer’s perspective in
event-based software is clearly on event handling. We
see significant opportunity in separating out event
generation in any model we consider for large-scale
simulations. Event generation in typical simulations
includes assumptions about phenomena that are
simulated, and those that are not, and the use of
stochastics as a substitute for the unknown and/or
unsimulated phenomena.

Stochastic sampling is another property commonly
found in simulations. The presence of stochastics
implies a relaxed level of strictness about the values
that can be taken on by a parameter at any given point
in time. We want to leverage this relaxation of
parameter values in the determination of the suitability
of two components for semantic consistency.

Lastly, simulations typically have some form of time
management. Regardless of whether a simulation is
event-stepped, or time-stepped, the simulation, by the
very nature of it running on a computer, has a discrete
flavor to it. Typically, there are places along the
discrete time axis where things need to be made
semantically consistent, and in between these times,
this condition can be relaxed. In other words, semantic
consistency is not a continuum that follows a
continuous curve along the axis of time. Once again,
we want to leverage this identification of critical points
and relaxation of consistency in determining whether
components are semantically composable.

6. Conclusion

We have shown that the CBSD and simulation
composability are more similar than different. They
both have the goal of promoting reuse and widening
design alternatives. Both are challenged with respect
to putting together the right business case to get the
technologies jump-started. Fundamentally, both
software engineering and simulation composition are
predicated on syntactic and semantic composability,
which means that both the interfaces and the internals
are necessary to make composition work. At this point
in their maturity, both simulation composability and
CBSD have converged. They both have made
significant progress solving technical interoperability
problems, yet both are challenged ensuring that
compositions are meaningful and valid.

We believe a two-pronged approach provides the best
possibility for future advances in simulation
composability. First, because composability and
CBSD share the same challenges, simulationists must
continue to monitor the progress of software
engineering research for potential technologies to
provide further advances in interoperability and
composability. Secondly, because simulation
components have unique characteristics not necessarily
present in all software components, attempts should be
made to leverage these properties to make advances
that might be applicable only within the simulation
domain.

7. Acknowledgements

We wish to acknowledge support from the Defense
Modeling and Simulation Office, particularly from Sue
Numerich and Phil Zimmerman. Additional support
was provided by the U.S. Army and the National
Science Foundation (ITR 0426971).

8. References

[1] Mikel D. Petty and Eric W. Weisel. “A

Composability Lexicon.” Proceedings of the
Spring 2003 Simulation Interoperability
Workshop, Orlando, FL, April 2003.

[2] Ernest H. Page and Jeffrey M. Opper.
“Observations On the Complexity of Composable
Simulation.” Proceedings of the 1999 Winter
Simulation Conference, Phoenix, AZ, December
1999.

[3] Mikel D. Petty, Eric W. Weisel, and Roland R.
Mielke. “Computational Complexity of Selecting
Components For Composition.” Proceedings of

the Fall 2003 Simulation Interoperability
Workshop, Orlando, FL, September 2003.

[4] Michael Roy Fox, David C. Brogan, and Paul F.
Reynolds, Jr. “Approximating Component
Selection.” To appear in Proceedings of the 2004
Winter Simulation Conference, Washington, D.C.,
December 2004.

[5] Mikel D. Petty and Eric W. Weisel. “A Formal
Basis For a Theory of Semantic Composability.”
Proceedings of the Spring 2003 Simulation
Interoperability Workshop, Orlando, FL, April
2003.

[6] Eric W. Weisel, Mikel D. Petty, and Roland R.
Mielke. “Validity of Models and Classes of
Models in Semantic Composability.” Proceedings
of the Fall 2003 Simulation Interoperability
Workshop, Orlando, FL, September 2003.

[7] “IEEE Standard for Distributed Interactive
Simulation – Application Protocols.” IEEE std.
1278.1

[8] Richard Weatherly, David Seidel, and Jon
Weissman. “Aggregate Level Simulation
Protocol.” Proceedings of the 1991 Summer
Computer Simulation Conference, Baltimore, MD,
July 1991.

[9] “IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)”. IEEE
std. 1516-2000.

[10] Robert L. Wittman, Jr. and Cynthia T. Harrison.
“OneSAF: A Product Line Approach to
Simulation Development.” Technical Report, The
MITRE Corporation, February 2001.

[11] Clemens Szyperski. Component Software: Beyond
Object-Oriented Programming (2d Edition).
Addison-Wesley, 2002.

[12] William T. Councill and George T. Heineman.
“Definition of a Software Component and its
Elements”, chapter in Component Based Software
Engineering: Putting the Pieces Together,
Addison-Wesley, 2001.

[13] Component Object Model Plus (COM+)
homepage. Microsoft,
http://www.microsoft.com/com/tech/COMPlus.asp
.

[14] Common Object Request Broker Architecture
(CORBA) homepage. Object Management Group,
http://www.omg.org/corba/.

[15] Enterprise JavaBeans Technology (EJB)
homepage. Sun Microsystems,
http://java.sun.com/products/ejb/.

[16] Johann Oberleitner, Thomas Gschwind, and
Mehdi Jazayeri. “The Vienna Component
Framework Enabling Composition Across
Component Models.” Proceedings of the 25th

International Conference on Software
Engineering, Portland, OR, May 2003.

[17] Alan W. Brown and Kurt C. Wallnau. “The
Current State of CBSE.” IEEE Software, 15(5):37-
46, September-October 1998.

[18] Paul Allen. “CBD Survey: The State of the
Practice.” The Cutter Edge email service, Cutter
Consortium, April 2002.

[19] Paul K. Davis and Robert H. Anderson. Improving
the Composability of Department of Defense
Models and Simulation. RAND National Defense
Research Institute, Santa Monica, CA, 2003.

[20] Frederick P. Brooks, Jr. “No Silver Bullet.”
chapter in The Mythical Man-Month (Anniversary
Edition), Addison-Wesley, 1995.

[21] Frederick P. Brooks, Jr. “No Silver Bullet
Refired.” chapter in The Mythical Man-Month
(Anniversary Edition), Addison-Wesley, 1995.

[22] David Garlan, Robert Allen, and John
Ockerbloom. “Architectural Mismatch or Why It’s
Hard to Build Systems Out of Existing Parts.”
Proceedings of the Seventeenth International
Conference on Software Engineering, Seattle,
WA, April 1995.

[23] Kevin J. Sullivan and John C. Knight. “Experience
Assessing an Architectural Approach to Large-
Scale Systematic Reuse.” Proceedings of the
Eighteenth International Conference on Software
Engineering, Berlin, Germany, March 1996.

[24] Stephen Kasputis and Henry C. Ng. “Composable
Simulations.” Proceedings of the 2000 Winter
Simulation Conference, Orlando, FL, December
2000.

[25] Kelli Houston and Davyd Norris. “Software
Components and the UML.” chapter in
Component Based Software Engineering: Putting
the Pieces Together, Addison-Wesley, 2001.

[26] David Krieger and Richard M. Adler. “The
Emergence of Distributed Component Platforms.”
IEEE Computer, 31(3):43-53, March 1998.

[27] Predictable Assembly From Certifiable
Components (PACC) homepage, Carnegie Mellon
University/Software Engineering Institute,
http://www.sei.cmu.edu/pacc.

[28] Kurt C. Wallnau. Volume III: A Technology for
Predictable Assembly from Certifiable
Components (PACC), Technical Report, Carnegie
Mellon University/Software Engineering Institute,
April 2003.

[29] Tim Berners-Lee, James Hendler, and Ora Lassila.
“The Semantic Web.” Scientific American,
284(5):34-43, May 2001.

[30] Web Ontology Language (OWL) homepage.
World Wide Web Consortium,
http://www.w3.org/2003/OWL/.

[31] John A. Miller, Gregory T. Baramidze, Amit P.
Sheth, and Paul A. Fishwick. “Investigating
Ontologies for Simulation Modeling.” Proceedings
of the 37th Annual Simulation Symposium,
Arlington, VA, April 2004.

[32] Unified Modeling Language (UML) homepage.
Object Management Group,
http://www.omg.org/uml/.

[33] Model Driven Architecture (MDA) homepage.
Object Management Group,
http://www.omg.org/mda/.

[34] Andreas Tolk. “Avoiding Another Green Elephant
– A Proposal For the Next Generation HLA Based
On the Model Driven Architecture.” Proceedings
of the 2002 Fall Simulation Interoperability
Workshop, Orlando, FL, September 2002.

[35] Wei Tze Ng, Seng Joo Thio, and Cheng Hong
Teo. A MDA-Based Translation Approach to
Component-Level Reuse.” Proceedings of the
Spring 2004 Simulation Interoperability
Workshop, Arlington, VA, April 2004.

[36] Don Brutzman and Andreas Tolk. “JSB
Composability and Web Services Interoperability
Via Extensible Modeling & Simulation
Framework (XMSF), Model Driven Architecture
(MDA), Component Repositories, and Web-based
Visualization.” Technical Report, Naval
Postgraduate School and Old Dominion
University, November 2003.

[37] Bernard P. Zeigler, Herbert Praehofer, and Tag
Gon Kim, Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous
Complex Dynamic Systems (2d Edition).
Academic Press, 2000.

[38] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, and
Alexander E. Wise. “A Framework For Event-
Based Software Integration”. ACM Transactions
on Software Engineering and Methodology,
5(4):378–421, October 1996.

Author Biographies

ROBERT G. BARTHOLET is a Ph.D. Candidate in
Computer Science and a member of MaSTRI at the
University of Virginia. Robert earned his B.S. in
Electrical Engineering at the U.S. Military Academy at
West Point, and his Masters in Computer Science at
the University of Virginia. Robert is an active duty
Lieutenant Colonel in the U.S. Army with 9 years
experience in the Field Artillery. For the past 7 years
he has served in the Signal Corps as an Information
Systems Engineer supporting battlefield
communication and automation systems in tactical
units.

DAVID BROGAN earned his PhD from Georgia Tech
and is currently an Assistant Professor of Computer
Science and a member of MaSTRI at the University of
Virginia. For more than a decade, he has studied
simulation, control, and computer graphics for the
purpose of creating immersive environments, training
simulators, and engineering tools. His research
interests extend to artificial intelligence, optimization,
and physical simulation.

PAUL F. REYNOLDS, Jr. is a Professor of
Computer Science and a member of MaSTRI at the
University of Virginia. He has conducted research in
modeling and simulation for over 25 years, and has
published on a variety of M&S topics including
parallel and distributed simulation, multiresolution
models and coercible simulations. He has advised
numerous industrial and government agencies on
matters relating to modeling and simulation. He is a
plank holder in the DoD High Level Architecture.

JOSEPH C. CARNAHAN is a Ph.D. Candidate in
Computer Science and a member of MaSTRI at the
University of Virginia. Joseph earned his B.S. in
Computer Science at the College of William and Mary,
and has held the position of Scientist at the Naval
Surface Warfare Center, Dahlgren Division.

